变频技术的迅速发展趋势分析介绍 2
2、变频器的技术发展动向
2.1单元串联多电平技术
单元串联多电平形式在谐波、效率和功率因数等方面存在着优势,在不要求四象限运行时有着较广泛的应用前景。其中三电平控制具有许多优点,包括:(1)采用三电平拓扑能有效地解决电力电子器件耐压不高的问题,适用于高电压大功率。(2)三电平拓扑单个桥能输出三种电平(+ud/2、一Ud/2、0),线(相)电压有更多的阶梯来模拟正弦波,使输出波形失真度减少,谐波大大减少。(3)多级电压阶梯波减少了du/dt,使得对电机绕组绝缘冲击减小。(4)三电平PWM方法把第一组谐波分布带移至2倍开关频率的频带区,利用电机绕组电感能较好地抑制高次谐波对电机的影响。采用三电平PWM方法,每个功率单元的IGBT开关频率为600Hz,若每相5个功率单元串联时,等效的输出相电压开关频率为6kHz,可以降低开关损耗,提高变频器效率,这种变频器可适用于任何普通的高压电动机,且不必降额使用。虽然采用这种主电路拓扑结构会使器件的数量增加,但由于驱动功率下降,开关频率较低且不必采用均压电路,使系统在效率方面仍有较大的优势,一般可达97%。并且,由于采用模块化结构,所有功率单元可以互换,维修也比较方便。(5)三电平拓扑能产生3x3X3=27种空间电压矢量,可以带来谐波消除算法的自由度,可以得到很好的输出波形。
2.2功率母线技术
在电力电子技术及应用装置向高频化发展的今天,系统中特别是连接线的寄生参数产生巨大的电应力,己成为威胁电力电子装置可靠性的重要因素。从直流储能电容至逆变器的器件之间的直流母线上的寄生电感在通常的硬开关逆变器中,由于瞬时切换时的过电压,会使器件过热,甚至有时使逆变器失控并超过器件的额定安全工作区而损坏,限制了开关工作频率的提高。功率母线按其结构包括:
(1)电缆绞线是最常用的传统功率母线,价廉简易,但在IGBT逆变器中,由于电缆线的自感大,与圆截面导线相比,扁平母线的自感只有圆导线的1/3一1/2,而所占的体积只有它的1/10一1/2。
(2)印刷电路板母线主要用于小电流逆变器,但当母线直流电流达到150A时,要求电路板的复铜层很厚,造价太高,另外用来连接多层导线板的穿孔不但占据较大的空间,而且会影响整机的可靠性。
(3)裸铜板母线(平面并行母线)是一种工业上广泛应用的IGBT模块馈电系统的传统母线形式,其缺点是并行母线的互感较大。(4)支架式母线如果将正直流母线铜板放置在负直流母线板上方,中间用一层薄绝缘材料隔开的方法来制作母线,由于磁场的相互抵消,可以最大限度地降低互感,但其工艺复杂,不宜规模化生产。
基于上述几种功率母线都存在着不同的缺点,为此开发出了迭层功率母线。迭层功率母线是基于电磁场理论,把连线做成扁平截面,在同样的截面下,做得越薄越宽,它的寄生电感越小,相邻导线内流过相反的电流,其磁场抵消,也可使寄生电感减小。迭层功率母线是以又薄又宽的铜排形式迭放在一起,各层之间用很薄的高绝缘强度的材料热压成一体,整个母线极之间的距离均匀一致,以减少互感,各层铜排都在所需要的端子位置处同其他层可靠绝缘地引出,使所具有不同电位的端子表露在同一平面上,以便于把主电路中的所有器件与之相连。这种整体的迭层功率母线结构,可承受数百千克的切应力,其导电极之间可承受数千伏的电压。使用迭层功率母线将IGBT和整流管等模块、散热器、电容器及栅极驱动电路组合在一起,迭层功率母线与器件之间的连接是用不同的端子和插接件等来完成的,使相连接的接触表面与母线之间的接触电阻非常小,也使得寄生电感成数量级地减小,从而使Ldi/dt的过电压应力降至最低,保证电力电子装置工作在最佳状态。
2.3微机控制和人工智能技术
采用微机控制技术可以对变频器进行控制和保护。在控制方面:(1)计算确定开关元件的开通和关断时刻,使逆变器按调制策略输出要求的电压。(2)通过不同的编码实现多种传动调速功能。如各种频率的设定和执行、启动、运行方式选择、转矩控制设定与运行、加减速设计与运行、制动方式设定和执行等。(3)通过接口电路、外部传感器、微机构成调速传动系统。在保护方面,在外部传感器及工/0电路配合下,构成完善的检测保护系统,可完成多种自诊断保护方案。保护功能包括:(1)主电路、控制电路的欠压、过电压保护;(2)输出电流的欠电流、过电流保护;(3)电动机或逆变器的过载保护;(4)制动电阻的过热保护;(5)失速保护。
采用人工智能技术对变频器进行故障诊断,构成故障诊断系统,该系统由监控、检测、知识库(故障模式知识库或故障诊断专家系统知识库)、推理机构、人机对话接口和数据库组成,不仅在故障发生后能准确指出故障性质、部位,且在故障发生前也能预测发生故障的可能性。在变频器启动前对诊断系统本身及变频器主电路(包括电源)、控制系统等进行一次诊断清查隐患。若发现故障现象则调用知识库推理、判断故障原因并显示不能开机,如无故障则显示可以开机。开机后,实时检测诊断。工作时对各检测点进行循环查询,存储数据并不断刷新。若发现数据越限,则认为可能发生故障,立即定向追踪。若几次检查结果相同,说明确实出了故障,于是调用知识库进行分析推理,确定是何种故障及其部位,显示出来,严重时则发出停机指令。
2.4其它各种技术
近年来,国内外一些公司都在研制新型“无电网污染”的高压变频器。
据报道,这类变频装置具有高功率因数、高效率、无谐波污染、无需专用电机等优点,采用了多项先进技术:
(1)在变频器的逆变器直流侧通过曲折变压器移相实现30“脉波整流,使装置的谐波抑制能力大大加强,使电网侧电压与电流之间几乎无相移,因此功率因数可以接近于1。
(2)将全数字化光纤控制技术应用于变频器,使其控制柔性和可靠性大大提高。
(3)功率单元标准模块化、IGBT驱动电路智能化。
2.1单元串联多电平技术
单元串联多电平形式在谐波、效率和功率因数等方面存在着优势,在不要求四象限运行时有着较广泛的应用前景。其中三电平控制具有许多优点,包括:(1)采用三电平拓扑能有效地解决电力电子器件耐压不高的问题,适用于高电压大功率。(2)三电平拓扑单个桥能输出三种电平(+ud/2、一Ud/2、0),线(相)电压有更多的阶梯来模拟正弦波,使输出波形失真度减少,谐波大大减少。(3)多级电压阶梯波减少了du/dt,使得对电机绕组绝缘冲击减小。(4)三电平PWM方法把第一组谐波分布带移至2倍开关频率的频带区,利用电机绕组电感能较好地抑制高次谐波对电机的影响。采用三电平PWM方法,每个功率单元的IGBT开关频率为600Hz,若每相5个功率单元串联时,等效的输出相电压开关频率为6kHz,可以降低开关损耗,提高变频器效率,这种变频器可适用于任何普通的高压电动机,且不必降额使用。虽然采用这种主电路拓扑结构会使器件的数量增加,但由于驱动功率下降,开关频率较低且不必采用均压电路,使系统在效率方面仍有较大的优势,一般可达97%。并且,由于采用模块化结构,所有功率单元可以互换,维修也比较方便。(5)三电平拓扑能产生3x3X3=27种空间电压矢量,可以带来谐波消除算法的自由度,可以得到很好的输出波形。
2.2功率母线技术
在电力电子技术及应用装置向高频化发展的今天,系统中特别是连接线的寄生参数产生巨大的电应力,己成为威胁电力电子装置可靠性的重要因素。从直流储能电容至逆变器的器件之间的直流母线上的寄生电感在通常的硬开关逆变器中,由于瞬时切换时的过电压,会使器件过热,甚至有时使逆变器失控并超过器件的额定安全工作区而损坏,限制了开关工作频率的提高。功率母线按其结构包括:
(1)电缆绞线是最常用的传统功率母线,价廉简易,但在IGBT逆变器中,由于电缆线的自感大,与圆截面导线相比,扁平母线的自感只有圆导线的1/3一1/2,而所占的体积只有它的1/10一1/2。
(2)印刷电路板母线主要用于小电流逆变器,但当母线直流电流达到150A时,要求电路板的复铜层很厚,造价太高,另外用来连接多层导线板的穿孔不但占据较大的空间,而且会影响整机的可靠性。
(3)裸铜板母线(平面并行母线)是一种工业上广泛应用的IGBT模块馈电系统的传统母线形式,其缺点是并行母线的互感较大。(4)支架式母线如果将正直流母线铜板放置在负直流母线板上方,中间用一层薄绝缘材料隔开的方法来制作母线,由于磁场的相互抵消,可以最大限度地降低互感,但其工艺复杂,不宜规模化生产。
基于上述几种功率母线都存在着不同的缺点,为此开发出了迭层功率母线。迭层功率母线是基于电磁场理论,把连线做成扁平截面,在同样的截面下,做得越薄越宽,它的寄生电感越小,相邻导线内流过相反的电流,其磁场抵消,也可使寄生电感减小。迭层功率母线是以又薄又宽的铜排形式迭放在一起,各层之间用很薄的高绝缘强度的材料热压成一体,整个母线极之间的距离均匀一致,以减少互感,各层铜排都在所需要的端子位置处同其他层可靠绝缘地引出,使所具有不同电位的端子表露在同一平面上,以便于把主电路中的所有器件与之相连。这种整体的迭层功率母线结构,可承受数百千克的切应力,其导电极之间可承受数千伏的电压。使用迭层功率母线将IGBT和整流管等模块、散热器、电容器及栅极驱动电路组合在一起,迭层功率母线与器件之间的连接是用不同的端子和插接件等来完成的,使相连接的接触表面与母线之间的接触电阻非常小,也使得寄生电感成数量级地减小,从而使Ldi/dt的过电压应力降至最低,保证电力电子装置工作在最佳状态。
2.3微机控制和人工智能技术
采用微机控制技术可以对变频器进行控制和保护。在控制方面:(1)计算确定开关元件的开通和关断时刻,使逆变器按调制策略输出要求的电压。(2)通过不同的编码实现多种传动调速功能。如各种频率的设定和执行、启动、运行方式选择、转矩控制设定与运行、加减速设计与运行、制动方式设定和执行等。(3)通过接口电路、外部传感器、微机构成调速传动系统。在保护方面,在外部传感器及工/0电路配合下,构成完善的检测保护系统,可完成多种自诊断保护方案。保护功能包括:(1)主电路、控制电路的欠压、过电压保护;(2)输出电流的欠电流、过电流保护;(3)电动机或逆变器的过载保护;(4)制动电阻的过热保护;(5)失速保护。
采用人工智能技术对变频器进行故障诊断,构成故障诊断系统,该系统由监控、检测、知识库(故障模式知识库或故障诊断专家系统知识库)、推理机构、人机对话接口和数据库组成,不仅在故障发生后能准确指出故障性质、部位,且在故障发生前也能预测发生故障的可能性。在变频器启动前对诊断系统本身及变频器主电路(包括电源)、控制系统等进行一次诊断清查隐患。若发现故障现象则调用知识库推理、判断故障原因并显示不能开机,如无故障则显示可以开机。开机后,实时检测诊断。工作时对各检测点进行循环查询,存储数据并不断刷新。若发现数据越限,则认为可能发生故障,立即定向追踪。若几次检查结果相同,说明确实出了故障,于是调用知识库进行分析推理,确定是何种故障及其部位,显示出来,严重时则发出停机指令。
2.4其它各种技术
近年来,国内外一些公司都在研制新型“无电网污染”的高压变频器。
据报道,这类变频装置具有高功率因数、高效率、无谐波污染、无需专用电机等优点,采用了多项先进技术:
(1)在变频器的逆变器直流侧通过曲折变压器移相实现30“脉波整流,使装置的谐波抑制能力大大加强,使电网侧电压与电流之间几乎无相移,因此功率因数可以接近于1。
(2)将全数字化光纤控制技术应用于变频器,使其控制柔性和可靠性大大提高。
(3)功率单元标准模块化、IGBT驱动电路智能化。
文章版权归西部工控xbgk所有,未经许可不得转载。