中国计量科学研究院 - 铯冷原子喷泉钟电子测控系统
应用领域
电子/科研
使用产品
硬件:HMI+NI USB-6229+激光器
软件:LabVIEW
简介
时间频率是国际单位制七个基本量中准确度最高,意义最重大的基准量之一。世界各国一直在持续不断进行高准确度的国家时间频率基准研究。目前中国计量科学研究院(NIM)在科技部基础性专项的支持下,正在进行我国新一代具有国际先进水平的时间频率基准装置—激光冷却铯原子喷泉钟(10-15量级)的研制,并已取得了重大进展。
正文
铯原子钟是一种精密的计时器具。日常生活中使用的时间准到1分钟也就够了。但在近代的社会生产、科学研究和国防建设等部门,对时间的要求就高得多。它们要求时间要准到千分之一秒,甚至百万分之一秒。为了适应这些高精度的要求,人们制造出了一系列精密的计时器具,铯钟就是其中的一种。铯钟又叫“铯原子钟”。它利用铯原子内部的电子在两个能级间跳跃时辐射出来的电磁波作为标准,去控制校准电子振荡器,进而控制钟的走动。
这种钟的稳定程度很高,目前,最好的铯原子钟达到500万年才相差 1 秒。现在国际上, 普遍采用铯原子钟的跃迁频率作为时间频率的标准,广泛使用在天文、大地测量和国防建设等各个领域中。
工作原理:
每一个原子都有自己的特征振动频率。人们最熟悉的振动频率现象就是当食盐被喷洒到火焰上时食盐中的元素钠所发出的黄色的光。一个原子具有多种振动频率,一些位于无线电波波段,一些位于可见光波段,而另一些则处在两者之间。铯133则被普遍地选用作原子钟。
将铯原子共振子置于原子钟内,需要测量其中一种的跃迁频率。通常是采用锁定晶体振荡器到铯原子的主要微波谐振来实现。这一信号处于无线电的微波频谱范围内,并恰巧与广播卫星的发射频率相似,因此工程师们对制造这一频谱的仪器十分在行。
为了制造原子钟,铯原子会被加热至汽化,并通过一个真空管。在这一过程中,首先铯原子气要通过一个用来选择合适的能量状态原子的磁场,然后通过一个强烈的微波场。微波能量的频率在一个很窄的频率范围内震荡,以使得在每一个循环中一些频率点可以达到9,192,631,770Hz。精确的晶体振荡器所产生的微波的频率范围已经接近于这一精确频率。当一个铯原子接收到正确频率的微波能量时,能量状态将会发生相应改变。
在更远的真空管的尽头,另一个磁场将那些由于微波场在正确的频率上而已经改变能量状态的铯原子分离出来。在真空管尽头的探测器将打击在其上的铯原子呈比例的显示出,并在处在正确频率的微波场处呈现峰值。这一峰值被用来对产生的晶体振荡器作微小的修正,并使得微波场正好处在正确的频率。这一锁定的频率被9,192,631,770除,得到常见的现实世界需要的每秒一个脉冲。
工作过程:
铯原子钟又被人们形象的称作“喷泉钟”,因为铯原子钟的工作过程是铯原子象喷泉一样的“升降”。这一运动使得频率的计算更加精确。铯原子钟工作的整个过程可以分割为四个阶段:
第一阶段,由铯原子组成的气体,被引入到时钟的真空室中,用6束相互垂直的红外线激光(黄线)照射铯原子气,使之相互靠近而呈球状,同时激光减慢了原子的运动速度并将其冷却到接近绝对零度。
第二阶段,两束垂直的激光轻轻地将这个铯原子气球向上举起,形成“喷泉”式的运动,然后关闭所有的激光器。这个很小的推力将使铯原子气球向上举起约1m高,穿过一个充满微波的微波腔,这时铯原子从微波中吸收了足够能量。
第三阶段,在地心引力的作用下,铯原子气球开始向下落,再次穿过微波腔,并将所吸收的能量全部释放出来。
第四阶段,在微波腔的出口处,另一束激光射向铯原子气,探测器将对辐射出的荧光的强度进行测量。
文章版权归西部工控xbgk所有,未经许可不得转载。