限制并联电容器组过电压中的一种新方法
简介: 介绍了用相位控制高压断路器来控制并联电容器组的关合操作原理。叙述了相位控制高压断路器的组成及对断路器的特殊要求和对控制单元参数的设定。
关键字:并联电容器组 相位控制 控制单元 高压断路器
相关站中站: 无功补偿及电容器应用 低压断路器的选型
1 概述
高压断路器在电力系统中操作并联电容器组时会引起过电压。操作过电压的幅值与电力系统的参数特别是断路器特性以及关合和开断的相角有很大的关系。在不利的相位角合闸时所引起的过电压倍数会很大,甚至会危及到电力系统的稳定。
通常限制并联电容器组操作过电压的措施是避雷器。而避雷器在操作过电压下的频繁动作也将会大大缩短它的寿命。自20世纪70年代中期开始,国外开始研究相位控制高压断路器的技术,其设计思想是通过计算让断路器在一个固定的相位上合闸或分闸,从而使系统内的操作过电压幅值降至最低。据国际大电网会议(CIGRE)统计数据显示,截至1993年,相位控制高压断路器大部分应用在电容器组的投入操作过程中。我国虽然对这种先进技术也进行过研究,但截至1998年尚无实际应用的例子。这与当时人们怀疑它的动作稳定性有很大关系。近年来随着电子技术的发展,国际上对这一技术更加重视[1,2]。 1998年,我国有一条输电线路的断路器采用了相位控制单元,以其来替代合闸电阻来限制线路的合闸过电压。2000年底,又有2套相位控制单元投入运行,用来限制并联电抗器的分闸过电压。到2001年底,将会有7套相位控制单元陆续投入运行,有2套相位控制单元首次在我国应用于并联电容器回路的SF6断路器上。图1是用于电容器组回路断路器的相位控制单元的例子。相位控制断路器除用于电容器、电抗器的合分闸操作外,还可用于变压器的操作以消除合闸时的励磁涌流[3]。
2 对相位控制断路器的要求
在不同的回路中对相位控制高压断路器的要求不同。例如在空载长线和并联电容器组的回路中,比较严重的情况是断路器的合闸操作。此时相位控制的目的是尽可能地减小回路中的电压突变,即需要尽可能地减小断路器断口上的预击穿电压。
相位控制高压断路器由相位控制单元和高压断路器组成。对高压断路器,为了取得准确的合闸或分闸相位,要求断路器每次操作的分散性必须很小。即要求断路器操动机构的性能很稳定。每次的分合闸时间必须相等或相差0.5ms以下。即使操作电压波动时也要满足以上要求。
对应用于并联电容器回路的SF6断路器,为了获得最佳的合闸性能,(即操作过电压最低,)要求断路器两相首先合闸后,经过90°相位角后最后一相再合闸。即对50Hz的电网这一时延为5ms。
3 相位控制单元的设计原理
相位控制单元是以计算机为核心的控制装置。以ABB公司的SWITCHSYNCE113(以下简称为E113)为例,它由微机参考电压电流输入、操作命令输入与输出、警报输出输入按钮及显示屏组成。特别要指出的是,它内部的可擦除储存器(EEPROM)在没有电源的情况下仍能可靠保存程序,使E113不致因发生混乱而引起误操作。
图2所示为E113的基本原理。以合闸为例,当控制单元得到一个合闸命令1时,计算机以最近的一个电压过零点选为它的时钟零点。(这个电压信号由电源侧电压互感器2上取得。)经过了一定的时间TVTOT后,E113控制单元给断路器发出合闸信号3。这个时间TVTOT的长度取决于计算机的运算时间、输入到E113内断路器的合闸时间、以及在E113的自适应模式下前一次断路器的操作时间等。
E113的自适应模式是前一次操作在相位上的任何偏差,都用来当作本次操作的修正量。这种偏差可能来源于断路器本身的分合闸时间上的分散性与继电器的动作延迟等。分合闸相位通常靠设备侧电压互感器2来确定。而这种自适应模式通常只用于合闸操作时。
4 并联电容器的合闸
由前所述,计算机的零点是参考电压的过零点。而参考电压不一定是断路器的首合相上的电压。其次,对每一种回路而言,都有其最佳合闸或分闸相位角。我们把参考电压 零点到最佳合闸(分闸)相位角之间的时间差定义为时延TD1。对图2[1]合闸电容器的情况,参考电压为R相,对R相,TD1为零,对S相和T相分别为6.7和3.3ms(50Hz).
实际上,断路器的动作时间总有一定的分散性,灭弧介质的绝缘强度也有差别,在考虑这两项因素后,统计表明,最佳的合闸时间比理论的最佳合闸时间有一定延迟。记为时延TD2。对合闸中性点接地的电容器组,取0. 3 ms。
因为断路器合闸前总存在预击穿,故实际关合时间比测量到的断路器的合闸时间要短。这个时延为TD3。(见图2)。对合闸中性点接地的电容器组,取0.1 ms。
合闸中性点接地的电容器组所得到的电压及电流波形见图3。
5 结论
(1)采用相位控制高压断路器可以有效地限制操作过电压。
(2)当断路器经特殊设计并与相位控制单元配合后,合闸并联电容器组的过电压倍数将比采用常规断路器时大大降低。据试验统计数据表明,过电压倍数小于1.5倍。
关键字:并联电容器组 相位控制 控制单元 高压断路器
相关站中站: 无功补偿及电容器应用 低压断路器的选型
1 概述
高压断路器在电力系统中操作并联电容器组时会引起过电压。操作过电压的幅值与电力系统的参数特别是断路器特性以及关合和开断的相角有很大的关系。在不利的相位角合闸时所引起的过电压倍数会很大,甚至会危及到电力系统的稳定。
通常限制并联电容器组操作过电压的措施是避雷器。而避雷器在操作过电压下的频繁动作也将会大大缩短它的寿命。自20世纪70年代中期开始,国外开始研究相位控制高压断路器的技术,其设计思想是通过计算让断路器在一个固定的相位上合闸或分闸,从而使系统内的操作过电压幅值降至最低。据国际大电网会议(CIGRE)统计数据显示,截至1993年,相位控制高压断路器大部分应用在电容器组的投入操作过程中。我国虽然对这种先进技术也进行过研究,但截至1998年尚无实际应用的例子。这与当时人们怀疑它的动作稳定性有很大关系。近年来随着电子技术的发展,国际上对这一技术更加重视[1,2]。 1998年,我国有一条输电线路的断路器采用了相位控制单元,以其来替代合闸电阻来限制线路的合闸过电压。2000年底,又有2套相位控制单元投入运行,用来限制并联电抗器的分闸过电压。到2001年底,将会有7套相位控制单元陆续投入运行,有2套相位控制单元首次在我国应用于并联电容器回路的SF6断路器上。图1是用于电容器组回路断路器的相位控制单元的例子。相位控制断路器除用于电容器、电抗器的合分闸操作外,还可用于变压器的操作以消除合闸时的励磁涌流[3]。
2 对相位控制断路器的要求
在不同的回路中对相位控制高压断路器的要求不同。例如在空载长线和并联电容器组的回路中,比较严重的情况是断路器的合闸操作。此时相位控制的目的是尽可能地减小回路中的电压突变,即需要尽可能地减小断路器断口上的预击穿电压。
相位控制高压断路器由相位控制单元和高压断路器组成。对高压断路器,为了取得准确的合闸或分闸相位,要求断路器每次操作的分散性必须很小。即要求断路器操动机构的性能很稳定。每次的分合闸时间必须相等或相差0.5ms以下。即使操作电压波动时也要满足以上要求。
对应用于并联电容器回路的SF6断路器,为了获得最佳的合闸性能,(即操作过电压最低,)要求断路器两相首先合闸后,经过90°相位角后最后一相再合闸。即对50Hz的电网这一时延为5ms。
3 相位控制单元的设计原理
相位控制单元是以计算机为核心的控制装置。以ABB公司的SWITCHSYNCE113(以下简称为E113)为例,它由微机参考电压电流输入、操作命令输入与输出、警报输出输入按钮及显示屏组成。特别要指出的是,它内部的可擦除储存器(EEPROM)在没有电源的情况下仍能可靠保存程序,使E113不致因发生混乱而引起误操作。
图2所示为E113的基本原理。以合闸为例,当控制单元得到一个合闸命令1时,计算机以最近的一个电压过零点选为它的时钟零点。(这个电压信号由电源侧电压互感器2上取得。)经过了一定的时间TVTOT后,E113控制单元给断路器发出合闸信号3。这个时间TVTOT的长度取决于计算机的运算时间、输入到E113内断路器的合闸时间、以及在E113的自适应模式下前一次断路器的操作时间等。
E113的自适应模式是前一次操作在相位上的任何偏差,都用来当作本次操作的修正量。这种偏差可能来源于断路器本身的分合闸时间上的分散性与继电器的动作延迟等。分合闸相位通常靠设备侧电压互感器2来确定。而这种自适应模式通常只用于合闸操作时。
4 并联电容器的合闸
由前所述,计算机的零点是参考电压的过零点。而参考电压不一定是断路器的首合相上的电压。其次,对每一种回路而言,都有其最佳合闸或分闸相位角。我们把参考电压 零点到最佳合闸(分闸)相位角之间的时间差定义为时延TD1。对图2[1]合闸电容器的情况,参考电压为R相,对R相,TD1为零,对S相和T相分别为6.7和3.3ms(50Hz).
实际上,断路器的动作时间总有一定的分散性,灭弧介质的绝缘强度也有差别,在考虑这两项因素后,统计表明,最佳的合闸时间比理论的最佳合闸时间有一定延迟。记为时延TD2。对合闸中性点接地的电容器组,取0. 3 ms。
因为断路器合闸前总存在预击穿,故实际关合时间比测量到的断路器的合闸时间要短。这个时延为TD3。(见图2)。对合闸中性点接地的电容器组,取0.1 ms。
合闸中性点接地的电容器组所得到的电压及电流波形见图3。
5 结论
(1)采用相位控制高压断路器可以有效地限制操作过电压。
(2)当断路器经特殊设计并与相位控制单元配合后,合闸并联电容器组的过电压倍数将比采用常规断路器时大大降低。据试验统计数据表明,过电压倍数小于1.5倍。
文章版权归西部工控xbgk所有,未经许可不得转载。
上一篇:浅谈智能小区消防电气设计方案
下一篇:普通异步电动机与变频电机的区别