基于FRA-开关电源的测量
随着电子,自控,航天,通讯,医疗器械等技术不断向深度和广度的发展,势必要求为其供电的电源要有更高的稳定性,即不仅要有好的线性调节率、负载调节率还要有快速的动态负载响应。而这些因素都和控制环路有关,控制环路一般工作在负反馈状态,称之为电压负反馈。如果变换器中没有用到反馈控制环路(即下图1中H部分),其传递函数一般为 其中G为输入滤波、功率变换、整流滤波部分等因数的乘积(因为其为级联的形式,所以本文中以总的乘积因子G来表示),可以看出输出随着输入的变化而成线性的变化,但是由于整流、滤波网络在整个时域的非线性,实际上这种变化应该是近似于线性,所以当输入电压改变的时候并不能很好的起到稳压的作用;如果反馈环路设计的不好,对于负载的瞬态改变,环路不能做出及时恰当的调整,那么输出电压瞬间会偏高或者偏低,甚至有可能造成电源系统的振荡,对下一级构成损坏。此时能够对环路测量就显得很重要了,那么环路部分又是怎样影响整个回路的呢?参考金升阳公司宽压或者AC-DC系列产品,此时下图表示的是反馈环路控制部分中的运放的环增益模型,其传递函数为
其中G:开环增益,H:反馈系数,GH:环增益(可以通过图1中推导看出)
一、环增益稳定的标准:
由传递函数 有,因为放大器的开环增益G是频率的函数,会随着频率的增加而减小,同时也和放大器的相位有关,当GH= -1,则其传递函数的值为∞,即增益是无穷大的,可以认为任意小的输入扰动都能引起输出的无穷大,如果这种输出无穷大的信号再反馈到功率变换环节,势必会造成最后输出的振荡,整个系统因而不再稳压。所以说可以通过分析GH的增益和相位来判断系统的稳定性。
又因为当GH= -1时是振荡的,所以有相移∠GH是180°(因为负反馈本身就有180°的相移),回路增益|GH|=1(0dB)。
所以要使运放稳定需要满足以下条件:1.相位条件就是要其相移要小于180°,即要有45度以上的裕量;2.还要满足增益条件即要有12dB以上的裕量;3.穿越频率按20dB/Dec闭合。相关解释下文给出。
二、Bode图的基础:
由上文知我们可以通过环增益GH的频率特性来判断系统的稳定性,而回路增益|GH|以及回路相位差∠GH的频率特性可以用Bode图(见图2)来表示,并且系统的稳定性可以通过Bode图中的相位裕量(phase margin) ,增益裕量(gain margin),穿越频率(crossover frequency)来衡量。其中
相位裕量(phase margin)是指:在频率-相位曲线上,当环路增益为单位增益时实际相位延迟与360deg 间的差值,以度(deg)为单位表示,见图2。
增益裕量(gain margin)是指: 在频率-增益曲线上,当总相位延迟为360deg 时,增益低于单位增益的量,以分贝(dB)为单位来表示,见图2。
穿越频率(crossover frequency)也有资料称之为频带宽度等是指:在频率-增益曲线上,增益为零时所对应的频率值,见图2。
相位裕量(phase margin)的作用,是确保在一定的条件下(包括元器件的误差、输入电压变化、负载变化、温升等)系统都能够稳定,使用在标称输入额定负载室温下,要有45度的裕量;如果输入电压、负载、温度变化范围非常大, 相位裕量不应小于30度。
增益裕量(gain margin)为了不接近不稳定点,一般认为12dB以上是必要的。
穿越频率(crossover frequency)频带宽度的大小可以反映控制环路响应的快慢。一般认为带宽越宽,其对负载动态响应的抑制能力就越好,过冲、欠冲越小,恢复时间也就越快,系统从而可以更稳定。但是由于受到右半平面零点的影响,以及原材料、运放的带宽不可能无穷大等综合因素的限制,电源的带宽也不能无限制提高,一般取开关频率的1/20~1/6。
三、环路的测试
对环路的增益和相位的测量,我们可以通常可利用频率响应分析仪(FRA)或增益-相位分析仪进行测量。这些仪器是通过对采样获得的模拟信号进行预处理,然后通过A/D转换,再利用DFT(离散傅里叶变换)运算求得增益和相位,最后用曲线
文章版权归西部工控xbgk所有,未经许可不得转载。