一种无线语音传输系统设计方案
1射频收发芯片nRF401
nRF401是挪威Nordic VLSI公司最新推出的单芯片RF收发机,专为在433MHz ISM (工业、科研和医疗) 频段工作而设计。它是目前集成度最高的无线数传产品。该芯片集成了高频发射、高频接收、PLL合成、FSK 调制、FSK解调、双频道切换等功能,具有性能优异、功耗低、使用方便等特点。nRF401 的外围元件很少,仅10个左右。只包括一个4MHz基准晶振(可与MCU共享)、一个PLL环路滤波器和一个VCO电感,收发天线合一,没有调试部件,这给研制及生产带来了极大的方便。主要技术特性见表1 所示,其内部结构如图1所示。
nRF401接收机使用具有较强抗干扰能力的FSK频移键控(Frequency-ShiftKeying)调制方式,改善了噪声环境下的系统性能;采用DSS+PLL频率合成技术, 工作频率稳定可靠。与ASK幅移键控(Amplitude-ShiftKeying)和OOK开关键控(On-Off Keying)方式相比,这种方式的通信范围更广,特别是在附近有类似设备工作的场合。
图1 nRF401内部框图
nRF401 无需外接昂贵的变容二极管,而其他竞争产品大多需要外接变容二极管、声表面波滤波器件等。这些芯片一般需要进行曼彻斯特编码后才能传输,在编程上会需要较高的技巧和经验,需要更多的内存和程序容量,并且曼彻斯特编码大大降低数据传输的效率,一般仅能达到标称速率(实际速率)的1/3,因此大大增加了软件的工作量和产品开发的难度。而nRF401系列独特的技术可以直接传送单片机串口数据,应用及编程非常简单,抗干扰能力强,传送的效率很高,且使用很方便。
nRF401采用小型20引脚SSOP封装,管脚数和体积最小,采用非常紧凑的电路板布局,有利于减少PCB面积,降低成本,适合便携式产品的设计,也有利于开发和生产。3V直流电源供电。接收电流低,仅为11mA,而且在轮流检测(Polling)模式时可以通过周期性暂停的方法使其更低,以延长电池寿命。它还提供进一步降低电流消耗的待机模式。表2为其部分管脚说明。
nRF401另一个非常重要的特性是接收机的频带外阻抗很高(out-of-band blocking),这意味着它不需要外部声表面波(SAW)滤波器。此外nRF401的解调器是DC平衡的,因此可以使用任何一种协议,也可以使用各种'0'、'1'序列,因而无需浪费单片机宝贵的处理资源来进行曼彻斯特编码。nRF401的串口可以与任何单片机接口,也不需要进行设置,应用及编程非常简单,可直接传输串口数据,传送的效率很高,是一种能方便地与各种单片机配合使用的方案。
2 音频接口芯片TLV320AIC10
TLV320AIC10是TI公司近年新推出的低功耗∑-Δ型16位A/D、D/A音频接口(AIC)芯片。模拟接口芯片(AIC)又称调制解调编解码器(modem Codec)以其高度可编程性,高性能,低功耗,较少的外围器件,成为当前语音处理的主流产品。适用于音频处理,语音增强,语音安全,回声抵消,VoIP(Voice-over-Internet Protocol)等广泛的电话或语音应用中。其功能强大的串行接口和应用支持以及低功耗的特性使得TLV320AIC10成为音频应用的最好的模拟接口。
TLV320AIC10为一通用,3-5.5V Codec,内部集成了16位A/D和D/A转换器。有两路模拟输入通道,一路模拟输出通道和一对数字I/O口。使用片内FIR滤波器时采样速率最高可达22ksps,采用片外FIR滤波器时其采样速率最高可达88ksps,工作方式和采样速率均可由单片机编程设置。其内部ADC之前有抗混叠滤波器,之后有抽样滤波器,DAC之前有插值滤波器,接收和发送可同时进行,且输入输出增益控制可编程,可工作在单端或差分方式。其独特的直接DCSI参数设置模式采用单线串行口直接对内部寄存器编程,不受数据转换串行口的影响。事件控制模式使单片机可监控如电话RING/OFF-HOOK检测等外部事件。
AIC10由5个控制寄存器控制。其中,控制寄存器1:软件复位,DAC的16位或15+1位模式选择以及抗混叠滤波器、抽样滤波器、插值滤波器使能/旁路选择。控制寄存器2:决定工作方式和采样速率。控制寄存器3:软件关电,模拟及数字信号反馈和事件控制模式选择;ADC的16位或15+1位模式选择。控制寄存器4:输入输出增益控制。AIC的初始化主要就是对这4个寄存器参数进行设定。该器件与单片机接口易于实现,开发和使用更加方便。尤其适合应用于低比特率、高性能密集设备的话音传输、识别及合成等的各种VOIP、电缆调制解调器、语音和电话领域。
3系统的硬件连接
接收/发射机应满足便携式电池供电设备的一些基本要求,才能适用于无线RF应用。这些基本要求为:方案成本低,体积小,低功耗,符合电池供电要求,集成度高,无需微调外部元件,外围元件极少,加工更容易,数据传输率高,传输时间更短,接口简单,可以与廉价的单片机接口。本文所设计的无线集群语音传输系统由单片射频收发芯片nRF401、微控制器MSP430F1121、TLV320AIC10、EPM7128S等芯片组成。其系统的硬件连接如图2所示。
MSP430F1121是TI公司生产的超低功耗微控制器,具有16位RISC结构,16位CPU寄存器和常数寄存器,4KB ROM,256B FLASH,256B RAM,指令周期时间125ns,超低工作电压(1.8V-3.6V),超低功率消耗(1.3uA-160uA),具有5种省电模式,可串行在线编程,程序代码由加密熔丝保护。从图中可以看出,微控制器是系统的"主管",负责运行协议、控制nRF401的收发状态, 完成编解码,并运行系统的应用软件和硬件,从而节约成本和空间。电路中E2PROM用于存放发射频率跳变的顺序和编码数据,RAM用于存放需微控制器处理的数据。采用1.5V电池供电,由于系统供电为3V,因此由一个DC/DC变换器完成电源的转换,为了避免DC/DC转换电源的噪声对通信造成影响,采用LC滤波。
nRF401是接收发射合一芯片,即可以接收数据也可以发射数据,工作方式为半双工。因此该电路即是发射电路也是接收电路。在有键按下时为发射状态,话音信号经TLV320AIC10做A/D变换后,在MSP430F1121的控制下将数据送给nRF401,将其发射出去。无按键按下时为接收状态。
芯片使用时,首先通过微控制器对芯片内部寄存器进行设置,设定工作频率、发射功率等参数;进入正常工作状态后,通过微控制器根据需要进行收发转换控制、发送/接收数据或进行状态转换。工作模式如表3 所示。
表3 工作模式设置
EPM7128S用来提供整个系统需要的组合逻辑。它属于MAX7000系列,是Altera公司的基于第二代MAX结构的CPLD。它提供多达5000个可用门和在系统编程,其引脚到引脚延时快达6ns。可以容纳各种各样的,独立的组合逻辑和时序逻辑功能。EPM7128S有2个工作电压,核电压为5V,I/O工作电压可设为5V或3.3V。设为3.3V时,其输入耐5V,而输出为3.3V TTL电平(所有的驱动器均能配置在3.3V和5V,允许用于混合电压系统中)。EPM7128S的优点是它基于E2PROM,可以通过JTAG口进行在线编程,设计者可将设计内容从PC机上通过下载电缆和JTAG口对EPM7128S进行任意次修改。在这里使用EPM7128S是为电路提供组合逻辑以映射空间。它有多达100个I/O引脚可供编程使用,方便系统扩展存储空间和外设。
程序设计时应注意的问题是:nRF401的通讯速率最高为22Kbit/s;接收模式转换为发射模式的转换时间至少1ms;可以发送任意长度的数据;发射模式转换为接收模式的转换时间至少为3ms。在待机模式时,电路进入待机状态,电路不接收和发射数据。在低功耗模式时,电路进入不了工作状态,电路不接收和发射数据。待机模式和低功耗模式转换为发射模式的转换时间至少为3ms;待机模式和低功耗模式转换为接收模式的转换时间至少2ms。
4 混合信号PCB设计注意问题
一个好的印制电路板(PCB)设计对于获得好的RF性能是必需的,本系统用两层板来设计。由于nRF401外围元件少,是目前集成度最高的RF收发芯片并集成了基带处理,设计比较方便,但是实际由于高频电路的特性,工作频率较高(UHF),且nRF401 PCB设计是混合信号电路设计,尽管nRF401已经大大简化了射频电路设计及要求,设计时仍然需要十分的注意。一般来说有以下原则需要遵循:
(1)布线时不能只考虑线能否布通,如果PCB布线布局不合理,可能会大大影响性能和通信距离,这是RF电路设计的特点决定的。因此将PCB分为射频电路和控制电路两部分布置。PCB使用双面板,分为元件面和底面。底面有一个连续的接地面,元件面的接地面保证元件充分接地,大量的通孔链接元件面的接地面和底面的接地面。
(2)合适的零件布局。射频电路的元件面以nRF401为中心,各元件紧靠其周围,尽可能减少分布参数的影响。需要说明的是VCO电感的布局是非常重要的,一个经过优化的VCO电感布局将可以给PLL环路滤波器提供一个合适的电压。匹配网络的元器件最好靠近nRF401的ANT1和ANT2,以减小杂散电感和杂散电容。
(3)将PCB分区为独立的模拟部分和数字部分。在电路板的所有层中,数字信号只能在电路板的数字部分布线,模拟信号只能在电路板的模拟部分布线,并且模拟电源和数字电源要分割。nRF401的直流供电必需在离VDD脚尽可能近的地方用高性能的RF电容去藕。如果一个小电容再并上一个较大的电容效果会更好(2.2uF)。射频部分的电源和数字电路部分的电源分离,nRF401的VSS端直接连接到接地面。
(4)射频电路的电源使用高性能的射频电容去耦,去耦电容尽可能靠近nRF401的VDD端,一般还在较大容量的表面贴装电容旁并联一个小数值的电容。nRF401的电源必需经过很好的滤波,并且与数字电路供电分离。
(5)布线时,电源线和地线要尽量粗。除减小压降外,更重要的是降低耦合噪声。从单片机引入的晶体走线不能离数据线或者控制线太近。注意电源的滤波和电源线的走线。不能将数字信号或控制信号引入到PLL回路滤波器元件上。布线时尽量减少回路环的面积,以降低感应噪声。 (6)采用正确的布线规则。在PCB板上应该避免长的电源走线,所有元件地线,VDD连接线,VDD去藕电容必需离nRF401尽可能近,如果PCB设计的顶层有铺铜,VSS脚必需连接到铺铜面,如果PCB的设计的底层有铺铜,与VSS的焊盘有一个过孔相连会获得更好的性能。所有开关数字信号和控制信号都不能经过PLL环路滤波器元件和VCO电感附近。
(7) 充分考虑电源对nRF401的影响。电源做得好,整个电路的抗干扰就解决了一大半。RF电路对电源噪声很敏感,要给RF电源加滤波电路,以减小电源噪声对RF电路的干扰。比如,可以利用磁珠和电容组成П型滤波电路,当然条件要求不高时也可用电感代替磁珠。
文章版权归西部工控xbgk所有,未经许可不得转载。