风力发电测量保护模块的设计与应用
0 引言
近年来,随着传统能源的价格不断走高及由此导致发电成本不断上升和全球气候变暖等环境问题的影响,可再生能源的开发利用上升到一个前所未有的高度。风力发电是当今世界新能源开发技术最成熟、最具规模开发和商业化发展前景的发电方式之一。风具有随机变化的特性,而风力发电机组的输出功率与风速的立方成正比,因此风力发电机组的输出功率通常随着风速大幅快速变化,若将大量风电接入电网将会对电网的电能质量和电网稳定性产生影响3。所以在控制风电容量在系统中所占比例的前提下,分析风力发电对电网电压的影响因素并对其进行控制至关重要。
因此,我们需要一款装置,能够针对风力发电系统的特性,在电网失效、电网频率、电压偏差过大、发电机输出功率过大、有功和无功潮流发生反向等故障,发出告警信号,提醒控制器及时采取措施。本文介绍了一款针对风力发电系统设计的AGP测量保护模块,该模块可测量电压、电流、频率、电能等传统电参量,并针对系统电压、频率、负载等故障进行报警,同时集成了2个根据时间的欠压保护,提高了控制系统对电压闪变的抗干扰能力。
1 电路设计原理
AGP的硬件电路包括主控芯片、电源、电压、电流信号采集电路、开关量输入模块、继电器输出模块、人机交互单元、RS485通讯接口、Profibus_DP通讯协议接口、Can open通讯接口(图1)。
图 1 硬件电路框图
1.1 主控芯片
1.2 电源
AGP采用直流24V工作电源,使用广州金升阳公司的宽电压输入DCDC模块WRF2405P,工作温度范围-40~85℃、隔离电压3000VDC、实测输出纹波<1%,同时在电源输入部分设计加入放电管、PTC压敏电阻、TVS管、防反接二极管等器件(图2),具有过压、过流等保护。
图2 电源电路
1.3 信号采集电路(图3)
信号采集包括电压信号、电流信号和频率信号:电压信号采用分压电阻输入,电流信号采用互感器隔离输入,将交流信号抬高后,通过放大电路将信号进行放大,最后将信号送入CPU进行软件差分运算。
图3 电流信号电路
1.4 接口设计
AGP的接口包括人机交互单元、RS485通讯接口、开关量输入输出接口。在设计各类接口的同时,需加入提高电磁兼容性能、耐压、触点保护等元件以提高装置的可靠性。
2 电参量计算及软件设计
2.1 基波、谐波、相角差等的计算
DFT的定义
其中
将DFT定义式展开成方程组
将方程组写成矩阵形式
用向量表示
X=Wx
用复数表示:
从矩阵形式表示可以看出,由于计算一个X(k)值需要N次复乘法和(N-1)次复数加法,因而计算N个X(k)值,共需N2次复乘法和N(N-1)次复加法。每次复乘法包括4次实数乘法和2次实数加法,每次复加法包括2次实数加法,因此计算N点的DFT共需要4N2次实数乘法和(2N2+2N·(N-1))次实数加法。当N很大时,这是一个非常大的计算量。
从在实际应用中,为了满足风电系统快速响应的要求,j可取64点,N只取2,仅计算基波电压、电流和相角差等参数,在同等条件下未优化DFT运算时间(图4)和优化DFT运算时间(图5)经测试对比,计算单路信号一次DFT运算仅需40us,大大提高了运算速
图4 未优化DFT运算时间 图5 优化后DFT运算时间
2.2 基于对称分量法的不对称故障计算
图6 负序电压求解图
图6 为负序电压求解图,同理可以得到电压正序分量U+。
电压不平衡度计算:
U+ -----三相电压的正序分量;
U- -----三相电压的负序分量;
如下表,经验证,实际测量值误差小于0.1%。
表1 各种情况下的不平衡率
施加源信号 |
理论不平衡率(%) |
实测不平衡率(%) | ||
A相 |
B相 |
C相 | ||
220 |
0 |
0 |
100 |
99.9 |
220 |
220 |
0 |
50 |
49.9 |
220 |
220 |
110 |
20 |
20.0 |
2.3 电压畸变率的计算
电压真有效值计算:
基波电流计算:
U1-----基波电流
K------基波电流校准系数
UDFT1------此次DFT 1次分量的模
总谐波失真系数计算:
电压畸变率的计算:
2.4 软件流程
AGP的软件流程主要包括A/D信号采集程序、TPM测频程序、电参量计算程序、保护处理程序、各种通讯协议处理程序等,由于内容较多,现给出部分程序流程。
图 7 主程序流程图
MCF51EM256每一路AD模块均具有A和B 2个通道输入,任一通道采集完成后通过内置PDB模块调整自动切换时间,实现电压、电流相角差调整来达到功率补偿功能,该方法简单可行,中断同时需对AD异常做出处理,现给出AD中断处理程序流程。
图 8 中断程序流程图
3 风力发电系统相关技术规定和应用
随着风力发电装机容量的不断扩大,国家电网公司对风力发电机提出了一系列的要求,《GB/T 19069-2003 风力发电机组控制器技术条件》和《风电场接入电网技术规定实施细则-2009》中明确了控制器需要具有的功能。主要包括:电网频率控制、无功功率和电网电压控制、低电压穿越(LVRT)控制以及电能质量控制等。
3.1 风电场运行频率
表2 各种频率下的风电场运行
电网频率范围 |
要求 |
低于48Hz |
根据风电场内风电机组允许运行的最低频率而定。 |
48Hz-49.5Hz |
每次频率低于49.5Hz时要求至少能运行10min。 |
49.5Hz-50.5Hz |
连续运行。 |
50.5Hz-51Hz |
每次频率高于50.5Hz时,要求至少能运行2min;并且当频率高于50.5Hz时,不允许停止状态的风电机组并网。 |
高于51Hz |
文章版权归西部工控xbgk所有,未经许可不得转载。 你可能感兴趣的文章 2024-08-18 2024-05-16 2024-05-16 2024-05-16 2024-05-14 2024-04-29 |