技术频道

IGBT的工作原理和工作特性

  IGBT的开关作用是通过加正向栅极电压形成沟道,给PNP晶体管提供基极电流,使IGBT导通。反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT关断。IGBT的驱动方法和MOSFET基本相同,只需控制输入极N一沟道MOSFET,所以具有高输入阻抗特性。

  当MOSFET的沟道形成后,从P+基极注入到N一层的空穴(少子),对N一层进行电导调制,减小N一层的电阻,使IGBT在高电压时,也具有低的通态电压。

  IGBT的工作特性包括静态和动态两类:

  1.静态特性IGBT的静态特性主要有伏安特性、转移特性和开关特性。

  IGBT的伏安特性是指以栅源电压Ugs为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs的控制,Ugs越高,Id越大。它与GTR的输出特性相似.也可分为饱和区1、放大区2和击穿特性3部分。在截止状态下的IGBT,正向电压由J2结承担,反向电压由J1结承担。如果无N+缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT的某些应用范围。

  IGBT的转移特性是指输出漏极电流Id与栅源电压Ugs之间的关系曲线。它与MOSFET的转移特性相同,当栅源电压小于开启电压Ugs(th)时,IGBT处于关断状态。在IGBT导通后的大部分漏极电流范围内,Id与Ugs呈线性关系。最高栅源电压受最大漏极电流限制,其最佳值一般取为15V左右。

  IGBT的开关特性是指漏极电流与漏源电压之间的关系。IGBT处于导通态时,由于它的PNP晶体管为宽基区晶体管,所以其B值极低。尽管等效电路为达林顿结构,但流过MOSFET的电流成为IGBT总电流的主要部分。此时,通态电压Uds(on)可用下式表示

  Uds(on) = Uj1 + Udr + IdRoh ( 2 - 14 )

  式中 Uj1 —— JI 结的正向电压,其值为 0.7 ~ IV ;

  Udr ——扩展电阻 Rdr 上的压降;

  Roh ——沟道电阻。

  通态电流 Ids 可用下式表示:

  Ids=(1+Bpnp)Imos (2 - 15 )

  式中 Imos ——流过 MOSFET 的电流。

  由于 N+ 区存在电导调制效应,所以 IGBT 的通态压降小,耐压 1000V 的 IGBT 通态压降为 2 ~ 3V 。

  IGBT 处于断态时,只有很小的泄漏电流存在。

  2 .动态特性 IGBT 在开通过程中,大部分时间是作为 MOSFET 来运行的,只是在漏源电压 Uds 下降过程后期, PNP 晶体 管由放大区至饱和,又增加了一段延迟时间。 td(on) 为开通延迟时间, tri 为电流上升时间。实际应用中常给出的漏极电流开通时间 ton 即为 td (on) tri 之和。漏源电压的下降时间由 tfe1 和 tfe2 组成,如图 2 - 58 所示

  IGBT 在关断过程中,漏极电流的波形变为两段。因为 MOSFET 关断后, PNP 晶体管的存储电荷难以迅速消除,造成漏极电流较长的尾部时间, td(off) 为关断延迟时间, trv 为电压 Uds(f) 的上升时间。实际应用中常常给出的漏极电流的下降时间 Tf 由图 2 - 59 中的 t(f1) 和 t(f2) 两段组成,而漏极电流的关断时间

  t(off)=td(off)+trv 十 t(f) ( 2 - 16 )

  式中, td(off) 与 trv 之和又称为存储时间。

文章版权归西部工控xbgk所有,未经许可不得转载。