自动化技术在输油管道和站库的应用探讨
摘要:胜利油田输油管道与站库信息化建设项目,经过了系统设计、硬件安装、设备单调、软件测试、系统联调等过程,解决了设备的远程控制、信号干扰、PLC数据采集等难题。
关键词:信息化;输油泵;加热炉;PLC;
Abstract: Information-based construction item of the victory oil-field oil-pipeline and the station, install through the system design, hardware, equipments monotone, the software test and the system adjusts. Solved the remote control of the equipments, the signal interference and data of PLC collects etc..
Keywords: Information Oil_Pump Heater PLC
企业信息化是企业现代化的重要标志,是企业发展的动力源泉,更是提高企业经济效益与竞争力的捷径和主要保证。企业信息化是长期艰巨而又紧迫的任务。胜利油田基层单位分布广,功能差别较大,同时单位的信息化基础相对较薄弱,水平较低。如何结合“数字油田”的建设要求与生产实际情况,探讨所辖基层单位的信息化建设的形式、方法和内容,是信息工程技术人员主要责任和义务。
1 信息化建设背景
永安输油站作为胜利油田重点的中间加温加压站,担负着自上游原油库到下游近二分之一的中转任务。该站动力系统为1984年建站投产设备,性能相对落后,几乎没有生产参数自动采集。2001年该站热力系统设备改建,自动化程度相对较高。如何在现有基础上实现信息化站库建设与管理要求,成为该站迫切解决的难题和重点。
信息化建设前的状况
1) 原油储罐的液位、温度、压力等参数全靠岗位工人现场检尺,看表,工人劳动强度大,计量误差较大。
2) 通过人工巡回检查外输泵机组的各部位振动值、温度值、电机电流电压等运行参数,。
3) 两套热媒炉系统点火控制部分在现场,控制参数仅基于现场数字显示,重点生产数据无法采集上传,不能及时交换生产流程中的重点信息。
4) 站内生产数据不能与首末站生产相关联,生产调控极为简单,无法实施输油系统的优化运行和系统运行安全检测。
2 “数字化”建设的方法与内容
2.1 建设功能
1) 热媒炉系统远程启停控制、系统联锁、炉效实时分析等;
2) 外输泵机组电参数动态采集、远程启停输油泵、泵状态实时检测、泵效实时分析和监视等;
3) 重点生产参数(主要流程管道压力温度、储罐液位温度、热交换区温度压力、地温气温等)实时采集;
4) 常规生产管理流程的自动化操作,如热力越站、水力越站等;
5) 生产参数的网络动态发布,包括生产参数监视系统、泵状态检测系统、UPS动态监视系统等;
2.2 建设具体内容
1) 对重点参数进行了自动采集,包括压力、温度(包括炉膛温度、烟道温度、地温、气温)、油罐、燃油罐、水罐液位和温度等;
2) 对永安输油站流程常规切换的14只手动阀加装电动执行机构;
3) 对原油外输流量计(两台)、燃油流量计(两台)进行自动计数采集、累计量计算;
4) 对3台泵机组电机实时用电参数进行实时采集,包括三相电流、电压、频率、功率因素、有功电量、无功电量等;
5) 对热媒炉系统原控制柜功能移到PLC系统,实现了远程起停、联锁保护;
6) 对3台输油泵的前后轴承振动、温度进行实时监测,实现在线状态监测和故障诊断;
7) 实现3台输油泵远程启停控制;
8) 对泵房区及全站设立视频监视,并4路可燃气体报警接入系统;
9) 系统后备电池及UPS建设,为系统提供4~8小时电源支持,并提供动态监视画面;
10)对进出站输油压力温度流量等参数纳入长输管道泄漏检测系统。
2.3系统建设硬件
1) PLC系统硬件如图1所示
两台上位机主要满足操作站和监视站功能。操作站主要进行现场生产运行的自动操作/手动操作。操作站直接读取PLC数据。监视站通过双网卡,满足读取PLC只读点的数据动态显示,并与油田信息网接入,实时发布只读点信息。
2)泵状态检测硬件构成如图2所示:
FAS站是S8100机泵群在线状态监测系统的重要组成部分,负责完成现场传感器的供电、信号采集和处理,并采用RS485通讯协议与通讯。FAS站采用防爆设计,可以安装在危险环境中[2]。
输油泵状态监测系统Station8100相对独立,实时监测泵轴承振动、温度数据,一旦出现数据超标,立即给出报警,通过对振动数据的频谱分析,可以分析判断出机组振动超标的根源、故障的类型,从而保障机组安全运行。该系统同时提供数据的动态网络发布,管理人员可以本地浏览器(IE)查看现场机泵的实时运行状态数据,得到机泵的实时运行信息[4]。
2.4 信息化建设中软件功能
1)上位机和PLC系统软件构成
系统软件包括PLC下位机控制软件和上位机组态软件两部分,下位机主要完成数据采集、流程切换控制、状态监测、故障报警、连锁保护等功能。上位机主要完成分类流程画面、数据动态监视、数据历史查询、报表自动生成、运行参数的高级应用等。PLC运行控制软件为OMRON公司编程软件CX-PROGRAMMER4.0,上位机组态软件采用国产三维力控组态软件[1]。上位机通过以太网(ETHNET)方式直接与PLC进行通讯。
2)上位机实现的功能
①通过组态,把各种现场需要操作的指令,比如开关阀门、启停泵、启停热媒炉、流程切换等传送到下位机控制器里,然后由控制器控制现场的相应设备,进行动作,完成相应任务[5]。
②设置各种报警参数,比如说是进站压力上下限、大罐液位上下限、泵电压上限等需要报警的参数的限值,这样当这些参数超过设定值时,上位机就会报警,提示操作人员去进行相关的检查或操作。
③关键参数的历史和实时趋势曲线显示,比如热媒炉温度曲线、进出站压力曲线、外输泵压力曲线。
④结合胜利油田“源头数据”建设要求,通过上位机软件,自动生成班报、日报等,并满足手动数据的录入,如含水密度等参数。
3)上位机功能模块如图3所示
4)下位机(PLC)完成功能
通过各功能模块与现场仪表线的联接,完成模数转换(A/D),状态量(DI)的采集,输出点(DO)控制,高速脉冲的计数(PI),以及通讯模块的数据转换等底层数据的处理,并完成生产常规流程的控制和自动运行。
5)泵状态检测软件系统[2]:
S8100系统是专用检测振动软件系列之一,以SQL Server2000为后台数据库,并满足网络发布功能,以它主要提供包括棒图、波形图、频谱图、趋势图等)。以下为网络浏览时的画面。
6)泄漏检测系统[3]
长输管道泄漏检测系统,由我公司自主开发的应用软件,主要利用负压波法和流量“实时”对比法进行检测。负压波主要用于泄漏点的定位,流量采集用定量分析管道的泄漏情况。永安输油站主要作用是“实时”采集进出口压力和流量计读数,通过网络将数据送到三级调度进行专职人员的监视和分析。
3 经验交流
1)同信号多采集解决方法
由于泄漏检测系统对信号采集要求较高,对进出压力信号采集频率在100HZ左右,同时对流量脉冲信号以每5秒累计计算出瞬时流量。如果利用PLC采集结果通过通讯方式与泄漏检测系统连接,对压力波的捕获和流量动态对比上很容易产生不可预计的时间差,使泄漏检测系统增加误报或漏报的概率。通过硬件接线的现场应用,解决了同信号多采集的问题。对进出站压力(仪表输出4-20毫安)采用分信号办法,即通过专用设备(带隔离耦合)输出两路与输入相同的信号,分别满足PLC系统和泄漏检测系统的采集要求。对流量脉冲信号,由于输出是12伏的电压信号,直接对该信号进行并联采集即可。缺点是增加了投资和设备,优点是完全满足了不同系统的应用要求。
2)智能电量采集模块的现场接线法
本次信息化建设属于改造工程,一方面要满足改造前的生产运行方式,另一方面要将生产“数字化”信号全部纳入信息系统。在智能电量采模块的接线中,主要对低压配电接线进行改造,并同时满足原模拟表的正常显示和智能模块的正常工作。在智能模块技术人员的指导下进行安装后,模拟表正常显示,智能表电流数字信号出现近15安培的偏相。对于三相交流大型电机,这种偏相电流很容易造成相间电流的产生,对电动机工作十分不利。但原模拟表只有两相电流的显示,无论是线电流还是相电流,总与智能模块的电流数字信号不相符合。通过对智能模块的接线方式进行了重新认识,发现了问题所在,即电压采集与原信号并联,电流采集与原信号串联,并与厂方技术人员进行了核实与交流,查出了故障。接线前如图4所示,错误接线如图5所示,正确接线如图6所示。图5与图6的差别正是电流的串联与并联的关系,这正是导致电流不平衡的原因。
3)干扰信号的处理与仪表供电问题的解决
在进行热媒系统改造时,原控制系统自成体系,但重点参数不能引入PLC系统和数据网络发布。根据原数显仪表的特点,将该仪表的输出(4-20毫安有源输出)直接引入PLC系统时,发现输出信号时断时续,波动较大。结合隔离安全栅的工作特性,对每路输出加装安全栅,输出信号稳定并与原数显信号动态变化相差0.4%,达到设计要求,满足了重点参数的动态发布。在PLC系统中,设置两台24伏(5A)直接电流,一台专给PLC模板供电,另一台对20多台现场仪表提供电源。如果直接对现场同时供电,容易造成24伏电源由于加电瞬间电流过大而自保护,并且也不便于仪表的维护与检修。结合以前的改造经验与要求,增加7只开关,采用分批逐步供电的方式,以保证在系统掉电后现场仪表的正常供电。通过近一年半的运行,系统工作正常。
4 工程总结
永安输油站信息化管理系统建设的总体目标是应用目前先进、可靠的测控仪表及PLC控制系统,实现整个生产过程的自动控制、报警、连锁,实现输油系统优化运行、远程督导等功能,使生产、调度和安防实现自动化、网络化、信息化,从而提高输油站库的生产管理水平。
1)通过系统建设,使输油系统传递、运行控制成为有机的生产管理系统。通过对生产运行参数的实时采集,实现生产流程重点阀门的开/关/阀位的远程控制,实现油罐液位温度的动态监测,实现输油泵的状态检测,实现管理、控制、信息一体化。
2)提高该站安全管理水平。PLC系统能在第一时间捕捉各种可能引起事故的早期信息并提前报警,在中央控制室发出预告,如油气混合浓度超标报警、外输油温过低、局部生产管网压力过高等信息,对站内出现的任何报警都马上掌握,提前做好相应准备,及时处理。并对重点现场和全站提供视频监视。
3)进一步提高了该的信息化管理水平。中央控制室对站内重要信息如安全、生产、油进出库情况全面掌握。站内泵房岗、热媒炉岗等原油传送相互关联的岗位提供实时生产信息,为生产管理者提供详实可靠的原始、实时数据,并通过编制的优化运行、经济效益分析等软件,为决策者的决策提供参考和依据。
4)生产运行报表自动生成,保证了“源头数据”的及时性和正确性。通过上位机应用软件,将生产过程中原来依靠人工巡检、记录、判断的众多参数汇总到PLC控制系统,通过上位机软件自动生成管理运行大表,消除人为主观影响,提高运行记录的可信度,并极大地提高设备运行率和降低工作人员的劳动强度。
结束语:
通过该站信息化管理建设,初步建立了管道和站库联合运行效率分析机制,提高管道运行效率,进一步完善了热媒炉控制系统。通过安全系统和设备在线监测系统的建立,提升了故障诊断分析技术,将原设备事后维修体系转变成了以预防为主的维修体系,并提供动态参数的网络发布,为各级生产管理人员和精细化管理提供了有力的保障和基础,同时为其它输油管道及站库的信息化管理奠定了理论和实践经验。通过本工程建设的总结交流,借此抛砖引玉,恳切希望专家予以指正。
关键词:信息化;输油泵;加热炉;PLC;
Abstract: Information-based construction item of the victory oil-field oil-pipeline and the station, install through the system design, hardware, equipments monotone, the software test and the system adjusts. Solved the remote control of the equipments, the signal interference and data of PLC collects etc..
Keywords: Information Oil_Pump Heater PLC
企业信息化是企业现代化的重要标志,是企业发展的动力源泉,更是提高企业经济效益与竞争力的捷径和主要保证。企业信息化是长期艰巨而又紧迫的任务。胜利油田基层单位分布广,功能差别较大,同时单位的信息化基础相对较薄弱,水平较低。如何结合“数字油田”的建设要求与生产实际情况,探讨所辖基层单位的信息化建设的形式、方法和内容,是信息工程技术人员主要责任和义务。
1 信息化建设背景
永安输油站作为胜利油田重点的中间加温加压站,担负着自上游原油库到下游近二分之一的中转任务。该站动力系统为1984年建站投产设备,性能相对落后,几乎没有生产参数自动采集。2001年该站热力系统设备改建,自动化程度相对较高。如何在现有基础上实现信息化站库建设与管理要求,成为该站迫切解决的难题和重点。
信息化建设前的状况
1) 原油储罐的液位、温度、压力等参数全靠岗位工人现场检尺,看表,工人劳动强度大,计量误差较大。
2) 通过人工巡回检查外输泵机组的各部位振动值、温度值、电机电流电压等运行参数,。
3) 两套热媒炉系统点火控制部分在现场,控制参数仅基于现场数字显示,重点生产数据无法采集上传,不能及时交换生产流程中的重点信息。
4) 站内生产数据不能与首末站生产相关联,生产调控极为简单,无法实施输油系统的优化运行和系统运行安全检测。
2 “数字化”建设的方法与内容
2.1 建设功能
1) 热媒炉系统远程启停控制、系统联锁、炉效实时分析等;
2) 外输泵机组电参数动态采集、远程启停输油泵、泵状态实时检测、泵效实时分析和监视等;
3) 重点生产参数(主要流程管道压力温度、储罐液位温度、热交换区温度压力、地温气温等)实时采集;
4) 常规生产管理流程的自动化操作,如热力越站、水力越站等;
5) 生产参数的网络动态发布,包括生产参数监视系统、泵状态检测系统、UPS动态监视系统等;
2.2 建设具体内容
1) 对重点参数进行了自动采集,包括压力、温度(包括炉膛温度、烟道温度、地温、气温)、油罐、燃油罐、水罐液位和温度等;
2) 对永安输油站流程常规切换的14只手动阀加装电动执行机构;
3) 对原油外输流量计(两台)、燃油流量计(两台)进行自动计数采集、累计量计算;
4) 对3台泵机组电机实时用电参数进行实时采集,包括三相电流、电压、频率、功率因素、有功电量、无功电量等;
5) 对热媒炉系统原控制柜功能移到PLC系统,实现了远程起停、联锁保护;
6) 对3台输油泵的前后轴承振动、温度进行实时监测,实现在线状态监测和故障诊断;
7) 实现3台输油泵远程启停控制;
8) 对泵房区及全站设立视频监视,并4路可燃气体报警接入系统;
9) 系统后备电池及UPS建设,为系统提供4~8小时电源支持,并提供动态监视画面;
10)对进出站输油压力温度流量等参数纳入长输管道泄漏检测系统。
2.3系统建设硬件
1) PLC系统硬件如图1所示
两台上位机主要满足操作站和监视站功能。操作站主要进行现场生产运行的自动操作/手动操作。操作站直接读取PLC数据。监视站通过双网卡,满足读取PLC只读点的数据动态显示,并与油田信息网接入,实时发布只读点信息。
2)泵状态检测硬件构成如图2所示:
FAS站是S8100机泵群在线状态监测系统的重要组成部分,负责完成现场传感器的供电、信号采集和处理,并采用RS485通讯协议与通讯。FAS站采用防爆设计,可以安装在危险环境中[2]。
输油泵状态监测系统Station8100相对独立,实时监测泵轴承振动、温度数据,一旦出现数据超标,立即给出报警,通过对振动数据的频谱分析,可以分析判断出机组振动超标的根源、故障的类型,从而保障机组安全运行。该系统同时提供数据的动态网络发布,管理人员可以本地浏览器(IE)查看现场机泵的实时运行状态数据,得到机泵的实时运行信息[4]。
2.4 信息化建设中软件功能
1)上位机和PLC系统软件构成
系统软件包括PLC下位机控制软件和上位机组态软件两部分,下位机主要完成数据采集、流程切换控制、状态监测、故障报警、连锁保护等功能。上位机主要完成分类流程画面、数据动态监视、数据历史查询、报表自动生成、运行参数的高级应用等。PLC运行控制软件为OMRON公司编程软件CX-PROGRAMMER4.0,上位机组态软件采用国产三维力控组态软件[1]。上位机通过以太网(ETHNET)方式直接与PLC进行通讯。
2)上位机实现的功能
①通过组态,把各种现场需要操作的指令,比如开关阀门、启停泵、启停热媒炉、流程切换等传送到下位机控制器里,然后由控制器控制现场的相应设备,进行动作,完成相应任务[5]。
②设置各种报警参数,比如说是进站压力上下限、大罐液位上下限、泵电压上限等需要报警的参数的限值,这样当这些参数超过设定值时,上位机就会报警,提示操作人员去进行相关的检查或操作。
③关键参数的历史和实时趋势曲线显示,比如热媒炉温度曲线、进出站压力曲线、外输泵压力曲线。
④结合胜利油田“源头数据”建设要求,通过上位机软件,自动生成班报、日报等,并满足手动数据的录入,如含水密度等参数。
3)上位机功能模块如图3所示
4)下位机(PLC)完成功能
通过各功能模块与现场仪表线的联接,完成模数转换(A/D),状态量(DI)的采集,输出点(DO)控制,高速脉冲的计数(PI),以及通讯模块的数据转换等底层数据的处理,并完成生产常规流程的控制和自动运行。
5)泵状态检测软件系统[2]:
S8100系统是专用检测振动软件系列之一,以SQL Server2000为后台数据库,并满足网络发布功能,以它主要提供包括棒图、波形图、频谱图、趋势图等)。以下为网络浏览时的画面。
6)泄漏检测系统[3]
长输管道泄漏检测系统,由我公司自主开发的应用软件,主要利用负压波法和流量“实时”对比法进行检测。负压波主要用于泄漏点的定位,流量采集用定量分析管道的泄漏情况。永安输油站主要作用是“实时”采集进出口压力和流量计读数,通过网络将数据送到三级调度进行专职人员的监视和分析。
3 经验交流
1)同信号多采集解决方法
由于泄漏检测系统对信号采集要求较高,对进出压力信号采集频率在100HZ左右,同时对流量脉冲信号以每5秒累计计算出瞬时流量。如果利用PLC采集结果通过通讯方式与泄漏检测系统连接,对压力波的捕获和流量动态对比上很容易产生不可预计的时间差,使泄漏检测系统增加误报或漏报的概率。通过硬件接线的现场应用,解决了同信号多采集的问题。对进出站压力(仪表输出4-20毫安)采用分信号办法,即通过专用设备(带隔离耦合)输出两路与输入相同的信号,分别满足PLC系统和泄漏检测系统的采集要求。对流量脉冲信号,由于输出是12伏的电压信号,直接对该信号进行并联采集即可。缺点是增加了投资和设备,优点是完全满足了不同系统的应用要求。
2)智能电量采集模块的现场接线法
本次信息化建设属于改造工程,一方面要满足改造前的生产运行方式,另一方面要将生产“数字化”信号全部纳入信息系统。在智能电量采模块的接线中,主要对低压配电接线进行改造,并同时满足原模拟表的正常显示和智能模块的正常工作。在智能模块技术人员的指导下进行安装后,模拟表正常显示,智能表电流数字信号出现近15安培的偏相。对于三相交流大型电机,这种偏相电流很容易造成相间电流的产生,对电动机工作十分不利。但原模拟表只有两相电流的显示,无论是线电流还是相电流,总与智能模块的电流数字信号不相符合。通过对智能模块的接线方式进行了重新认识,发现了问题所在,即电压采集与原信号并联,电流采集与原信号串联,并与厂方技术人员进行了核实与交流,查出了故障。接线前如图4所示,错误接线如图5所示,正确接线如图6所示。图5与图6的差别正是电流的串联与并联的关系,这正是导致电流不平衡的原因。
3)干扰信号的处理与仪表供电问题的解决
在进行热媒系统改造时,原控制系统自成体系,但重点参数不能引入PLC系统和数据网络发布。根据原数显仪表的特点,将该仪表的输出(4-20毫安有源输出)直接引入PLC系统时,发现输出信号时断时续,波动较大。结合隔离安全栅的工作特性,对每路输出加装安全栅,输出信号稳定并与原数显信号动态变化相差0.4%,达到设计要求,满足了重点参数的动态发布。在PLC系统中,设置两台24伏(5A)直接电流,一台专给PLC模板供电,另一台对20多台现场仪表提供电源。如果直接对现场同时供电,容易造成24伏电源由于加电瞬间电流过大而自保护,并且也不便于仪表的维护与检修。结合以前的改造经验与要求,增加7只开关,采用分批逐步供电的方式,以保证在系统掉电后现场仪表的正常供电。通过近一年半的运行,系统工作正常。
4 工程总结
永安输油站信息化管理系统建设的总体目标是应用目前先进、可靠的测控仪表及PLC控制系统,实现整个生产过程的自动控制、报警、连锁,实现输油系统优化运行、远程督导等功能,使生产、调度和安防实现自动化、网络化、信息化,从而提高输油站库的生产管理水平。
1)通过系统建设,使输油系统传递、运行控制成为有机的生产管理系统。通过对生产运行参数的实时采集,实现生产流程重点阀门的开/关/阀位的远程控制,实现油罐液位温度的动态监测,实现输油泵的状态检测,实现管理、控制、信息一体化。
2)提高该站安全管理水平。PLC系统能在第一时间捕捉各种可能引起事故的早期信息并提前报警,在中央控制室发出预告,如油气混合浓度超标报警、外输油温过低、局部生产管网压力过高等信息,对站内出现的任何报警都马上掌握,提前做好相应准备,及时处理。并对重点现场和全站提供视频监视。
3)进一步提高了该的信息化管理水平。中央控制室对站内重要信息如安全、生产、油进出库情况全面掌握。站内泵房岗、热媒炉岗等原油传送相互关联的岗位提供实时生产信息,为生产管理者提供详实可靠的原始、实时数据,并通过编制的优化运行、经济效益分析等软件,为决策者的决策提供参考和依据。
4)生产运行报表自动生成,保证了“源头数据”的及时性和正确性。通过上位机应用软件,将生产过程中原来依靠人工巡检、记录、判断的众多参数汇总到PLC控制系统,通过上位机软件自动生成管理运行大表,消除人为主观影响,提高运行记录的可信度,并极大地提高设备运行率和降低工作人员的劳动强度。
结束语:
通过该站信息化管理建设,初步建立了管道和站库联合运行效率分析机制,提高管道运行效率,进一步完善了热媒炉控制系统。通过安全系统和设备在线监测系统的建立,提升了故障诊断分析技术,将原设备事后维修体系转变成了以预防为主的维修体系,并提供动态参数的网络发布,为各级生产管理人员和精细化管理提供了有力的保障和基础,同时为其它输油管道及站库的信息化管理奠定了理论和实践经验。通过本工程建设的总结交流,借此抛砖引玉,恳切希望专家予以指正。
文章版权归西部工控xbgk所有,未经许可不得转载。
上一篇:巧用组态软件,实现竞赛需求
下一篇:LED技术标准和检测方法探讨